

Welcome to ICCAS Python Helper’s documentation!

Contents:

	ICCAS Python Helper
	The package

	Notebooks

	Credits

	Installation
	Stable release

	From sources

	Usage

	iccas
	iccas package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	History
	0.1.0 (2020-10-07)

Indices and tables

	Index

	Module Index

	Search Page

ICCAS Python Helper

[image: _images/iccas.svg]
 [https://pypi.python.org/pypi/iccas][image: _images/iccas-python.svg]
 [https://travis-ci.com/janLuke/iccas-python][image: Documentation Status]
 [https://iccas.readthedocs.io/en/latest/?badge=latest][image: _images/badge_logo.svg]
 [https://mybinder.org/v2/gh/janLuke/iccas-python/main?filepath=notebooks]This repository contains:

	a helper package to get the ICCAS dataset [https://github.com/janLuke/iccas-dataset/] (Italian Coronavirus Cases by
Age group and Sex) and work with it;

	some Jupyter notebooks that you can run on Binder clicking the badge above.

The package

The package includes several submodules:

	Module

	Description

	loading

	Obtain, cache and load the dataset(s)

	processing

	Data (pre)processing. Fix data inconsistencies, resample data with interpolation.

	queries

	Select subsets of data, aggregate or extract useful values.

	charts

	Draw charts and animations (in Italian or English).

To install the package:

pip install iccas

If you want to use the CLI:

pip install iccas[cli]

	Free software: MIT license

	Documentation: https://iccas.readthedocs.io.

Notebooks

Notebooks text is written in Italian but charts are available in English as well.
You just need to run in the first cell:

ic.set_locale('en')

To run notebooks locally, you need to install jupyter [https://jupyter.org/install] , for example with:

pip install jupyterlab

Then:

pip install -r binder/requirements.txt
./binder/postBuild

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install ICCAS Python Helper, run this command in your terminal:

$ pip install iccas

This is the preferred method to install ICCAS Python Helper, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for ICCAS Python Helper can be downloaded from the Github repo [https://github.com/janLuke/iccas-python].

You can either clone the public repository:

$ git clone git://github.com/janLuke/iccas

Or download the tarball [https://github.com/janLuke/iccas-python/tarball/master]:

$ curl -OJL https://github.com/janLuke/iccas-python/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use ICCAS Python Helper in a project:

import iccas

iccas

	iccas package
	Submodules

	iccas.caching module

	iccas.checks module

	iccas.loading module

	iccas.processing module

	iccas.queries module

	iccas.types module

	Module contents

iccas package

Submodules

iccas.caching module

	
class iccas.caching.RemoteFolderProxy(folder_url, local_path)

	Bases: object

	
get(relative_path, force_download=False)

	Ensures the latest version of a remote file is available locally in the
cache, downloading it only if needed.
If no internet connection is available (or the server is unreachable),
the file available in the cache is returned with a warning; if the file
is not in the cache, a ConnectionError is raised.

	Parameters

	
	relative_path –

	force_download (bool) –

	Return type

	Path

	Returns

	full local path of the file

	
get_path_of(relative_url)

	
	Return type

	Path

iccas.checks module

Sanity checks.

	
iccas.checks.is_non_decreasing(df)

	

	
iccas.checks.totals_not_less_than_sum_of_sexes(data, variable)

	

iccas.loading module

	
iccas.loading.get(cache_dir=PosixPath('/home/docs/.iccas'))

	Returns the latest version of the ICCAS dataset in a
pandas.DataFrame (as it’s returned by load()).

This function uses RemoteFolderCache.get(), which caches.

	Raises

	
	request.exceptions.ConnectionError – if the server is unreachable

	and no dataset is available in cache_dir –

	Return type

	DataFrame

	
iccas.loading.get_by_date(date, keep_date=False, cache_dir=PosixPath('/home/docs/.iccas'))

	
	Return type

	Tuple[DataFrame, Timestamp]

	
iccas.loading.get_population_by_age(cache_dir=PosixPath('/home/docs/.iccas'))

	Returns a DataFrame with “age” as index and two columns:
“value” (absolute counts) and “percentage” (<=1.0)

	Return type

	DataFrame

	
iccas.loading.get_population_by_age_group(cache_dir=PosixPath('/home/docs/.iccas'))

	Returns a DataFrame with “age_group” as index and two columns:
“value” (absolute counts) and “percentage” (<=1.0)

	Return type

	DataFrame

	
iccas.loading.get_url(date=None, fmt='csv')

	Returns the url of a dataset in a given format. If date is None,
returns the URL of the full dataset.

	Return type

	str

	
iccas.loading.load(path)

	
	Return type

	DataFrame

	
iccas.loading.load_single_date(path, keep_date=False)

	Loads a dataset containing data for a single date.

By default (keep_date=False), the date column is dropped and the
datetime is stored in the attrs of the DataFrame.
If instead keep_date=True, the returned dataset has a MultiIndex
(date, age_group).

	Parameters

	
	path (Union[str, Path]) –

	keep_date (bool) – whether to drop the date column (containing a single datetime value)

	Return type

	DataFrame

iccas.processing module

	
iccas.processing.fix_monotonicity(data, method='pchip', **interpolation)

	Replaces tracts of “cases” and “deaths” time series that break the monotonicity
of the series with interpolated data, ensuring that the sum of male and female
counts are less or equal to the total count.

	Parameters

	
	data (DataFrame) – a DataFrame containing all integer columns about cases and deaths

	method – interpolation method

Returns:

	
iccas.processing.nullify_local_bumps(df)

	

	
iccas.processing.nullify_series_local_bumps(series)

	Set to NaN all elements s[i] such that s[i] > s[i+k]

	
iccas.processing.reindex_by_interpolating(data, new_index, preserve_ints=True, method='pchip', **interpolation)

	Reindexes data and fills new values by interpolation (PCHIP, by default).

This function was motivated by the fact that pandas.DataFrame.resample()
followed by pandas.DataFrame.resample() doesn’t take into account
misaligned datetimes.

	Parameters

	
	data (~PandasObj) – a DataFrame or Series with a datetime index

	new_index (DatetimeIndex) –

	preserve_ints (bool) – after interpolation, columns containing integers in the original
dataframe are rounded and converted back to int

	method – interpolation method (see pandas.DataFrame.interpolate())

	**interpolation – other interpolation keyword argument different from method passed
to pandas.DataFrame.interpolate()

	Return type

	~PandasObj

	Returns

	a new Dataframe/Series

See also

reindex_by_interpolating()

	
iccas.processing.resample(data, freq='1D', hour=18, preserve_ints=True, method='pchip', **interpolation)

	Resamples data and fills missing values by interpolation.

The resulting index is a pandas.DatetimeIndex whose elements are spaced by
accordingly to freq and having the time set to {hour}:00.

In the case of “day frequencies” (‘{num}D’), the index always includes the
latest date (data.index[-1]): the new index is a datetime range built
going backwards from the latest date.

This function was motivated by the fact that pandas.DataFrame.resample()
followed by pandas.DataFrame.resample() doesn’t take into account
misaligned datetimes. If you want to back-fill or forward-fill, just use
DataFrame.resample().

	Parameters

	
	data (~PandasObj) – a DataFrame or Series with a datetime index

	freq (Union[int, str]) – resampling frequency in pandas notation

	hour (int) – reference hour; all datetimes in the new index will have this hour

	preserve_ints (bool) – after interpolation, columns containing integers in the original
dataframe are rounded and converted back to int

	method – interpolation method (see pandas.DataFrame.interpolate())

	**interpolation – other interpolation keyword argument different from method passed
to pandas.DataFrame.interpolate()

	Return type

	~PandasObj

	Returns

	a new Dataframe/Series with index elements spaced according to freq

See also

reindex_by_interpolating()

iccas.queries module

	
iccas.queries.age_grouper(cuts, fmt_last='>={}')

	
	Return type

	Dict[str, str]

	
iccas.queries.aggregate_age_groups(counts, cuts, fmt_last='>={}')

	Aggregates counts for different age groups summing them together.

	Parameters

	
	counts (~PandasObj) – can be a Series with age groups as index or a DataFrame with
age groups as columns, either in a simple Index or in
a MultiIndex (no matter in what level)

	cuts (Union[int, Sequence[int]]) – a single integer N means “cuts each N years”;
a sequence of integers determines the start ages of new age groups.

	fmt_last (str) – format string for the last “unbounded” age group

	Return type

	~PandasObj

	Returns

	A Series/DataFrame with the same “structure” of the input but with
aggregated age groups.

	
iccas.queries.average_by_period(counts, freq)

	
	Return type

	~PandasObj

	
iccas.queries.cols(prefixes, fields='*')

	Generates a list of columns by combining prefixes with fields.

	Parameters

	
	prefixes (str) – string containing one or multiple of the following characters:
- ‘m’ for males
- ‘f’ for females
- ‘t’ for totals (no prefix)
- ‘*’ for all

	fields (Union[str, Sequence[str]]) – values: ‘cases’, ‘deaths’, ‘cases_percentage’, ‘deaths_percentage’,
‘fatality_rate’, ‘*’

	Return type

	List[str]

	Returns

	a list of string

	
iccas.queries.count_by_period(counts, freq)

	
	Return type

	~PandasObj

	
iccas.queries.fatality_rate(counts, shift)

	Computes the fatality rate as a ratio between the total number of deaths and
the total number of cases shift days before.

counts is resampled with interpolation if needed.

	
iccas.queries.get_unknown_sex_count(counts, variable)

	Returns cases/deaths of unknown sex for each age group

	Return type

	DataFrame

	
iccas.queries.only_cases(data)

	Returns only columns [‘cases’, ‘female_cases’, ‘male_cases’]

	Return type

	DataFrame

	
iccas.queries.only_counts(data)

	Returns only cases and deaths columns (including sex-specific columns),
dropping all other columns that are computable from these.

	Return type

	DataFrame

	
iccas.queries.only_deaths(data)

	Returns only columns [‘deaths’, ‘female_deaths’, ‘male_deaths’]

	Return type

	DataFrame

	
iccas.queries.product_join(*string_iterables, sep='')

	
	Return type

	Iterable[str]

	
iccas.queries.running_average(counts, window=7, step=1, **resample_kwargs)

	Given counts for cases/deaths, returns the average daily number of
new cases/deaths inside a temporal window of window, moving the window
step days a time.

	Parameters

	
	counts (~PandasObj) –

	window (int) –

	step (int) –

Returns:

	Return type

	~PandasObj

	
iccas.queries.running_count(counts, window=7, step=1, **resample_kwargs)

	Given counts for cases and/or deaths, returns the number of new cases inside
a temporal window of window days that moves forward by steps of step days.

	Parameters

	
	counts (~PandasObj) –

	window (int) –

	step (int) –

Returns:

	Return type

	~PandasObj

iccas.types module

Module contents

	
iccas.age_grouper(cuts, fmt_last='>={}')

	
	Return type

	Dict[str, str]

	
iccas.aggregate_age_groups(counts, cuts, fmt_last='>={}')

	Aggregates counts for different age groups summing them together.

	Parameters

	
	counts (~PandasObj) – can be a Series with age groups as index or a DataFrame with
age groups as columns, either in a simple Index or in
a MultiIndex (no matter in what level)

	cuts (Union[int, Sequence[int]]) – a single integer N means “cuts each N years”;
a sequence of integers determines the start ages of new age groups.

	fmt_last (str) – format string for the last “unbounded” age group

	Return type

	~PandasObj

	Returns

	A Series/DataFrame with the same “structure” of the input but with
aggregated age groups.

	
iccas.cols(prefixes, fields='*')

	Generates a list of columns by combining prefixes with fields.

	Parameters

	
	prefixes (str) – string containing one or multiple of the following characters:
- ‘m’ for males
- ‘f’ for females
- ‘t’ for totals (no prefix)
- ‘*’ for all

	fields (Union[str, Sequence[str]]) – values: ‘cases’, ‘deaths’, ‘cases_percentage’, ‘deaths_percentage’,
‘fatality_rate’, ‘*’

	Return type

	List[str]

	Returns

	a list of string

	
iccas.fatality_rate(counts, shift)

	Computes the fatality rate as a ratio between the total number of deaths and
the total number of cases shift days before.

counts is resampled with interpolation if needed.

	
iccas.fix_monotonicity(data, method='pchip', **interpolation)

	Replaces tracts of “cases” and “deaths” time series that break the monotonicity
of the series with interpolated data, ensuring that the sum of male and female
counts are less or equal to the total count.

	Parameters

	
	data (DataFrame) – a DataFrame containing all integer columns about cases and deaths

	method – interpolation method

Returns:

	
iccas.get(cache_dir=PosixPath('/home/docs/.iccas'))

	Returns the latest version of the ICCAS dataset in a
pandas.DataFrame (as it’s returned by load()).

This function uses RemoteFolderCache.get(), which caches.

	Raises

	
	request.exceptions.ConnectionError – if the server is unreachable

	and no dataset is available in cache_dir –

	Return type

	DataFrame

	
iccas.get_by_date(date, keep_date=False, cache_dir=PosixPath('/home/docs/.iccas'))

	
	Return type

	Tuple[DataFrame, Timestamp]

	
iccas.get_population_by_age(cache_dir=PosixPath('/home/docs/.iccas'))

	Returns a DataFrame with “age” as index and two columns:
“value” (absolute counts) and “percentage” (<=1.0)

	Return type

	DataFrame

	
iccas.get_population_by_age_group(cache_dir=PosixPath('/home/docs/.iccas'))

	Returns a DataFrame with “age_group” as index and two columns:
“value” (absolute counts) and “percentage” (<=1.0)

	Return type

	DataFrame

	
iccas.get_unknown_sex_count(counts, variable)

	Returns cases/deaths of unknown sex for each age group

	Return type

	DataFrame

	
iccas.get_url(date=None, fmt='csv')

	Returns the url of a dataset in a given format. If date is None,
returns the URL of the full dataset.

	Return type

	str

	
iccas.load(path)

	
	Return type

	DataFrame

	
iccas.load_single_date(path, keep_date=False)

	Loads a dataset containing data for a single date.

By default (keep_date=False), the date column is dropped and the
datetime is stored in the attrs of the DataFrame.
If instead keep_date=True, the returned dataset has a MultiIndex
(date, age_group).

	Parameters

	
	path (Union[str, Path]) –

	keep_date (bool) – whether to drop the date column (containing a single datetime value)

	Return type

	DataFrame

	
iccas.only_cases(data)

	Returns only columns [‘cases’, ‘female_cases’, ‘male_cases’]

	Return type

	DataFrame

	
iccas.only_counts(data)

	Returns only cases and deaths columns (including sex-specific columns),
dropping all other columns that are computable from these.

	Return type

	DataFrame

	
iccas.only_deaths(data)

	Returns only columns [‘deaths’, ‘female_deaths’, ‘male_deaths’]

	Return type

	DataFrame

	
iccas.reindex_by_interpolating(data, new_index, preserve_ints=True, method='pchip', **interpolation)

	Reindexes data and fills new values by interpolation (PCHIP, by default).

This function was motivated by the fact that pandas.DataFrame.resample()
followed by pandas.DataFrame.resample() doesn’t take into account
misaligned datetimes.

	Parameters

	
	data (~PandasObj) – a DataFrame or Series with a datetime index

	new_index (DatetimeIndex) –

	preserve_ints (bool) – after interpolation, columns containing integers in the original
dataframe are rounded and converted back to int

	method – interpolation method (see pandas.DataFrame.interpolate())

	**interpolation – other interpolation keyword argument different from method passed
to pandas.DataFrame.interpolate()

	Return type

	~PandasObj

	Returns

	a new Dataframe/Series

See also

reindex_by_interpolating()

	
iccas.resample(data, freq='1D', hour=18, preserve_ints=True, method='pchip', **interpolation)

	Resamples data and fills missing values by interpolation.

The resulting index is a pandas.DatetimeIndex whose elements are spaced by
accordingly to freq and having the time set to {hour}:00.

In the case of “day frequencies” (‘{num}D’), the index always includes the
latest date (data.index[-1]): the new index is a datetime range built
going backwards from the latest date.

This function was motivated by the fact that pandas.DataFrame.resample()
followed by pandas.DataFrame.resample() doesn’t take into account
misaligned datetimes. If you want to back-fill or forward-fill, just use
DataFrame.resample().

	Parameters

	
	data (~PandasObj) – a DataFrame or Series with a datetime index

	freq (Union[int, str]) – resampling frequency in pandas notation

	hour (int) – reference hour; all datetimes in the new index will have this hour

	preserve_ints (bool) – after interpolation, columns containing integers in the original
dataframe are rounded and converted back to int

	method – interpolation method (see pandas.DataFrame.interpolate())

	**interpolation – other interpolation keyword argument different from method passed
to pandas.DataFrame.interpolate()

	Return type

	~PandasObj

	Returns

	a new Dataframe/Series with index elements spaced according to freq

See also

reindex_by_interpolating()

	
iccas.running_average(counts, window=7, step=1, **resample_kwargs)

	Given counts for cases/deaths, returns the average daily number of
new cases/deaths inside a temporal window of window, moving the window
step days a time.

	Parameters

	
	counts (~PandasObj) –

	window (int) –

	step (int) –

Returns:

	Return type

	~PandasObj

	
iccas.running_count(counts, window=7, step=1, **resample_kwargs)

	Given counts for cases and/or deaths, returns the number of new cases inside
a temporal window of window days that moves forward by steps of step days.

	Parameters

	
	counts (~PandasObj) –

	window (int) –

	step (int) –

Returns:

	Return type

	~PandasObj

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/janLuke/iccas-python/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

ICCAS Python Helper could always use more documentation, whether as part of the
official ICCAS Python Helper docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/janLuke/iccas-python/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up iccas for local development.

	Fork the iccas repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/iccas.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv iccas
$ cd iccas/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 iccas tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.com/janLuke/iccas/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_iccas

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

History

0.1.0 (2020-10-07)

	First release on PyPI.

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 iccas	

 	
 	
 iccas.caching	

 	
 	
 iccas.checks	

 	
 	
 iccas.loading	

 	
 	
 iccas.processing	

 	
 	
 iccas.queries	

 	
 	
 iccas.types	

Index

 A
 | C
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | T

A

 	
 	age_grouper() (in module iccas)

 	(in module iccas.queries)

 	
 	aggregate_age_groups() (in module iccas)

 	(in module iccas.queries)

 	average_by_period() (in module iccas.queries)

C

 	
 	cols() (in module iccas)

 	(in module iccas.queries)

 	
 	count_by_period() (in module iccas.queries)

F

 	
 	fatality_rate() (in module iccas)

 	(in module iccas.queries)

 	
 	fix_monotonicity() (in module iccas)

 	(in module iccas.processing)

G

 	
 	get() (iccas.caching.RemoteFolderProxy method)

 	(in module iccas)

 	(in module iccas.loading)

 	get_by_date() (in module iccas)

 	(in module iccas.loading)

 	get_path_of() (iccas.caching.RemoteFolderProxy method)

 	get_population_by_age() (in module iccas)

 	(in module iccas.loading)

 	
 	get_population_by_age_group() (in module iccas)

 	(in module iccas.loading)

 	get_unknown_sex_count() (in module iccas)

 	(in module iccas.queries)

 	get_url() (in module iccas)

 	(in module iccas.loading)

I

 	
 	
 iccas

 	module

 	
 iccas.caching

 	module

 	
 iccas.checks

 	module

 	
 iccas.loading

 	module

 	
 	
 iccas.processing

 	module

 	
 iccas.queries

 	module

 	
 iccas.types

 	module

 	is_non_decreasing() (in module iccas.checks)

L

 	
 	load() (in module iccas)

 	(in module iccas.loading)

 	
 	load_single_date() (in module iccas)

 	(in module iccas.loading)

M

 	
 	
 module

 	iccas

 	iccas.caching

 	iccas.checks

 	iccas.loading

 	iccas.processing

 	iccas.queries

 	iccas.types

N

 	
 	nullify_local_bumps() (in module iccas.processing)

 	
 	nullify_series_local_bumps() (in module iccas.processing)

O

 	
 	only_cases() (in module iccas)

 	(in module iccas.queries)

 	only_counts() (in module iccas)

 	(in module iccas.queries)

 	
 	only_deaths() (in module iccas)

 	(in module iccas.queries)

P

 	
 	product_join() (in module iccas.queries)

R

 	
 	reindex_by_interpolating() (in module iccas)

 	(in module iccas.processing)

 	RemoteFolderProxy (class in iccas.caching)

 	resample() (in module iccas)

 	(in module iccas.processing)

 	
 	running_average() (in module iccas)

 	(in module iccas.queries)

 	running_count() (in module iccas)

 	(in module iccas.queries)

T

 	
 	totals_not_less_than_sum_of_sexes() (in module iccas.checks)

 nav.xhtml

 Table of Contents

 		
 Welcome to ICCAS Python Helper’s documentation!

 		
 ICCAS Python Helper

 		
 The package

 		
 Notebooks

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 iccas

 		
 iccas package

 		
 Submodules

 		
 iccas.caching module

 		
 iccas.checks module

 		
 iccas.loading module

 		
 iccas.processing module

 		
 iccas.queries module

 		
 iccas.types module

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 History

 		
 0.1.0 (2020-10-07)

_static/file.png

_static/minus.png

_static/plus.png

